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PHASE SEPARATION OF LIQUID CRYSTALS IN
POLYMERS

JOHN L. WEST
Liquid Crgstal Institute, Kent State University, Kent, OH
44242, US.A.

Abstract New optoelectronic materials based on pelymer
dispersed liquid crystals (PDLC) show great potential for
application in displays, temperature sensors, optical
computing and for solar energy control. We report liquid
crystal, thermoset or thermoplastic materials. PDLC
materials may be formed by several different processes. The
liquid crystal may be dissolved in low molecular weight
polymer precursors, in a thermoplastic melt or with a
thermoplastic in a common solvent. Subsequent poly-
merization, cooling of the polymer melt or solvent
evaporation lead to liquid crystal immiscibility, droplet
formation and growth, and polymer gelation. = The opto-
electronic properties of these materials are affected by the
droplet morphology. Specific examples are presented for each
of these processes and it is demonstrated how the droplet
morphology and density, and thus device performance, can be
controlled by each method. The thermoplastics are suitable
for forming films by a variety of techniques. A range of
polymers and liquid crystals may be used to form PDLC
materials, allowing them to be tailored for any of a number of
applications.

INTRODUCTION

Polymer dispersed liquid crystals (PDLCs) have recently been
reported.! These materials are formed by the incorporation of
liquid crystals in a crosslinked epoxy binder or in a UV cured
polymer matrix.2,3 The materials may be switched from a
scattering to a clear state by application of an electric field.
These materials show great promise in a variety of display
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FIGURE 2 v

Schematic representation of the PIPS process.

the liquid crystal droplets. The polymerization process continues X
and the liquid crystal within the droplets is purified. )
Purification of the liquid crystal within the droplets results in an o
increase in the nematic-to-isotropic phase transition
temperature. The refractive index of the liquid crystal in its .*;
isotropic phase is more closely matched with the polymer than in

the randomly oriented nematic phase. Thus, the film shows a X
large decrease in the intensity of scattered light at the nematic to .":
isotropic phase transition offering an excellent means of "t:f

monitoring this transition. The purification of the liquid crystal ReY
within the droplets may be due to slow transfer of lower -
molecular weight oligomers dissolved in the liquid crystal to the :;.
polymer binder where they react. lengthening the epoxy chains. ‘:ﬁ
The nematic-to-isotropic phase transition becomes narrower and ?
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approaches the temperature of the bulk liquid crystal as the
polymerization continues, indicating that the composition of the

W - -

liquid crystal within the droplets is essentially the same as that

( of the bulk.

4

. The droplet size and density for materials formed by the PIPS A

:'. process are highly dependent on the cure temperature. Figure 3
1
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FIGURE 3

Graph of average droplet diameter as a function of cure
temperature for: —— 1:1:1 mixture of epon 828,
; capcure 3800 and E7: = — = 209%MK-107, 11% A

epon 828, 28% capcure 3-800 and 41%E7.
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The t-butylamine was used to cure the epon because of the low N
melt temperature of the resulting polymer, <100°C. Coaling of "
the mixture results in phase separation, droplet formation and :;
growth, and polymer gelation. Figure 4 is the phase diagram of ‘
E7 in the t-butylamine cured Epon. The phase separation ;:
temperature was determined as the temperature at which an '?-
increase in the light scattered by the material occurred. The __,t
intensity of the scattered light was monitored as a decrease in _.,
the light transmitted through the material. Figure 5 shows the '5:‘
intensity of light transmitted through samples of various ::::
composition as a function of temperature. The polymer is the _,2‘-
continuous phase even for relatively high E7 concentrations. ":
Only for E7 concentrations greater than 80% is a continuous A
liquid crystal phase observed. The polymer has a finite solubility )
in the liquid crystal and is observed as a depression in the :1.:
nematic-to-isotropic phase transition temperature for high E7
concentrations. !
The rate of cooling of the polymer melt affects the resulting .
droplet morphology. Figure 6 is a plot of the average droplet X
diameter vs the rate of cooling. Rapid cooling results in smaller ;::‘
droplets and more liquid crystal remaining in the binder. Slower N
cooling results in larger droplets. This is because slower cooling :::"
allows more time for phase separation, droplet growth, and
droplet coalescence. The droplet size and density has a major 7
influence on the optoelectronic response of these materials and "5
on the scattering efficiency of these films.6,7 The scattering N
efficiency of the PDLC films is maximized when the droplet size :: ',
is on the order of the wavelength of light. The driving voltage -,
increases and the turn off time decreases with decreasing droplet “t:i
diameter. Therefore, the cooling rate of thermoplastic PDLC '.:
materials offers an excellent means of controlling device 5
performance. J

S ] - - R s
S OO OS OO DM Wk T, O MY



R34 A Rt R O L RAR AN Y

nematic

Isotropic

phase separated

isotropic

&
A

nematic

| GALRAARARARAR

x

phase separated
I S S O O S B R A B

84 88 92 96
wt. %E7

llllll

—
-
—

[}
o

FIGURE 4

Phase diagram of E7 and ¢t-butylamine cured Epon 828:

—— =droplet formation; - =nematic-isotropic transition.
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FIGURE 5 ;
Relative transmission vs temperature for films of varying liquid "

crystal composition in a t-butylamine cured Epon 828.
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SIPS results when the solvent is removed from a liquid -3
1 .
crystal and thermoplastic solution dissolved in a common v
solvent. Figure 7 is a ternary phase diagram showing g
schematically the SIPS process. A system consisting of polymer, .
liquid crystal, and a common solvent of composition represented A
. ]

by point X is made. Evaporation of the solvent moves the system ,
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N
" Droplet diameter vs the rate of cooling of a thermoplastic melt &
: consisting of E7 dissolved in Epon 828 cured with t-butylamine. (¢
.s :‘
®

‘E“ along the line XA. Upon crossing the miscibility gap droplets
B will form and grow until gelation of the polymer. Point A

represents the final composition of the SIPS formed PDLC film.

] E7 and polymethylmethacrylate (PMMA), dissolved in chloro- :
}: form were used to form PDLC films by the SIPS process. "
E' Evaporation of the chloroform results in the system crossing the :‘;
!; miscibility gap, leading to droplet formation and growth and 3
i polymer gelation. The droplet size and density are controlled by
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FIGURE 7
Schematic ternary phase diagram of the SIPS process.

the rate of solvent removal. The rate of solvent removal is
controlled by the rate at which air is passed over the sample; the
faster the air flow rate, the faster the rate of evaporation. Table
1 lists the time to dropiet formation and the droplet size as a
function of the air flow rate; the slower the air flow rate, and thus
the rate of solvent evaporation, the larger the droplet size.

FILM FORMING TECHNIQUES

Thermoplastic PDLC materials may be formed into films by a
variety of standard film forming techniques. Solvent coating
techniques such as dip coating, doctor blading and wire-wound
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Table 1. Droplet Size and Formation Time

Time to
Air Flow Rate Droplet Droplet Size
(ml/min) Formation (um)
(min)
100 34 <1
20 150 3
3 720 12

rods have been used to form uniform films on plastic substrates.
Hot melt techniques may also be used with thermoplastic films
not containing solvent. The resulting films may be laminated
using heat and pressure to form a PDLC film sandwiched
between conducting plastic substrates. Draw-down coaters may
be used to form films of thermoset PDLC materials. Large area
films are possible as are continuous film-forming processes

commonly used in plastic film manufacture.

CONCLUSION

PDLC materials may be formed by three basic processes: PIPS,
TIPS, and SIPS. Each process involves phase separation of liquid
crystals from a homogeneous polymer solution. The droplet size
and shape and thus the performance characteristics of the
material may be determined by controlling the phase separation
process. PDLC films may be made by a variety of standard film
forming techniques. They are suitable for a wide variety of
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applications, including large area displays, projection displays,

solar energy control, and thermometers.
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